

Welcome to Manticore’s documentation!

Manticore is a symbolic execution tool for analysis of binaries and smart contracts.

Contents:

	Property based symbolic executor: manticore-verifier
	Writing properties in {Solidity/ Vyper}

	Selecting a target contract

	User accounts

	Stopping condition
	Maximum number of transactions

	Maximum coverage % attained

	Timeout

	Walkthrough

	ManticoreBase

	Workers

	States
	Accessing

	Operations

	Inspecting

	EVM
	ABI

	Manager

	EVM

	Native
	Platforms

	Linux

	Models

	State

	Cpu

	Memory

	State

	Function Models

	Symbolic Input

	Web Assembly
	ManticoreWASM

	WASM World

	Executor

	Module Structure

	Types

	Plugins
	Core

	Worker

	EVM

	memory

	abstractcpu

	x86

	Gotchas
	Mutable context entries

	Context locking

	“Random” Policy

	Utilities
	Logging

Indices and tables

	Index

	Module Index

	Search Page

Property based symbolic executor: manticore-verifier

Manticore installs a separated CLI tool to do property based symbolic execution of smart contracts.

$ manticore-verifier your_contract.sol

manticore-verifier initializes an emulated blockchain environment with a configurable set of
accounts and then sends various symbolic transactions to the target contract containing property methods.
If a way to break a property is found the full transaction trace to reproduce the behavior is provided.
A configurable stopping condition bounds the exploration, properties not failing are considered to pass.

Writing properties in {Solidity/ Vyper}

manticore-verifier will detect and test property methods written in the
original contract language. A property can be written in the original language
by simply naming a method in a specific way. For example methods names starting with `crytic_`.

function crytic_test_true_property() view public returns (bool){
 return true;
 }

You can select your own way to name property methods using the --propre commandline argument.

--propre PROPRE A regular expression for selecting properties

Normal properties

In the most common case after some precondition is met some logic property must always be true.
Normal properties are property methods that must always return true (or REVERT).

Reverting properties

Sometimes it is difficult to detect that a revert has happened in an internal transaction.
manticore-verifier allows to test for ALWAYS REVERTing property methods.
Revert properties are property methods that must always REVERT.
Reverting property are any property method that contains “revert”. For example:

function crytic_test_must_always_revert() view public returns (bool){
 return true;
}

Selecting a target contract

manticore-verifier needs to be pointed to the target contract containing any number of property methods.
The target contract is the entry point of the exploration. It needs to initialize any internal structure or external contracts to a correct initial state. All methods of this contract matching the property name criteria will be tested.

--contract_name CONTRACT_NAME The target contract name defined in the source code

User accounts

You can specify what are the accounts used in the exploration.
Normally you do not want the owner or deployer of the contract to send the symbolic transaction and to use a separate unused account to actually check the property methods.
There are 3 types of user accounts:

	deployer: The account used to create the target contract

	senders: A set of accounts used to send symbolic transactions. Think that these transactions are the ones trying to put the contract in a state that makes the property fail.

	psender: The account used as caller to test the actual property methods

You can specify those via command line arguments

--deployer DEPLOYER (optional) address of account used to deploy the contract
--senders SENDERS (optional) a comma separated list of sender addresses.
 The properties are going to be tested sending
 transactions from these addresses.
--psender PSENDER (optional) address from where the property is tested

Or, if you prefer, you can specify a yaml file like this

deployer: "0x41414141414141414141"
sender: ["0x51515151515151515151", "0x52525252525252525252"]
psender: "0x616161616161616161"

If you specify the accounts both ways the commandline takes precedence over the yaml file.
If you do not provide specific accounts manticore-verifier will choose them for you.

Stopping condition

The exploration will continue to send symbolic transactions until one of the stopping criteria is met.

Maximum number of transactions

You can be interested only in what could happen under a number of transactions. After a maximum number of transactions is reached the explorations ends. Properties that had not been found to be breakable are considered a pass.
You can modify the max number of transactions to test vis a command line argument, otherwise it will stop at 3 transactions.

--maxt MAXT Max transaction count to explore

Maximum coverage % attained

By default, if a transaction does not produce new coverage, the exploration is stopped. But you can add a further constraint so that if the provided coverage percentage is obtained, stop. Note that this is the total % of runtime bytecode covered. By default, compilers add dead code, and also in this case the runtime contains the code of the properties methods. So use with care.

--maxcov MAXCOV Stop after maxcov % coverage is obtained in the main
 contract

Timeout

Exploration will stop after the timeout seconds have passed.

--timeout TIMEOUT Exploration timeout in seconds

Walkthrough

Consider this little contract containing a bug:

contract Ownership{ // It can have an owner!
 address owner = msg.sender;
 function Onwer() public{
 owner = msg.sender;
 }
 modifier isOwner(){
 require(owner == msg.sender);
 _;
 }
}
contract Pausable is Ownership{ //It is also pausable. You can pause it. You can resume it.
 bool is_paused;
 modifier ifNotPaused(){
 require(!is_paused);
 _;
 }
 function paused() isOwner public{
 is_paused = true;
 }
 function resume() isOwner public{
 is_paused = false;
 }
}
contract Token is Pausable{ //<< HERE it is.
 mapping(address => uint) public balances; // It maintains a balance sheet
 function transfer(address to, uint value) ifNotPaused public{ //and can transfer value
 balances[msg.sender] -= value; // from one account
 balances[to] += value; // to the other
 }
}

Assuming the programmer did not want to allow the magic creation of tokens.
We can design a property around the fact that the initial token count can not be increased over time. Even more relaxed, after the contract creation any account must have less that total count of tokens. The property looks like this :

contract TestToken is Token{
 constructor() public{
 //here lets initialize the thing
 balances[msg.sender] = 10000; //deployer account owns it all!
 }

 function crytic_test_balance() view public returns (bool){
 return balances[msg.sender] <= 10000; //nobody can have more than 100% of the tokens
 }

}

And you can unleash the verifier like this:

$manticore-verifier testtoken.sol --contract_name TestToken

ManticoreBase

Workers

States

Accessing

Operations

Inspecting

EVM

ABI

Manager

EVM

Native

Platforms

Linux

Models

State

Cpu

Memory

State

Function Models

The Manticore function modeling API can be used to override a certain
function in the target program with a custom implementation in Python.
This can greatly increase performance.

Manticore comes with implementations of function models for some common library routines (core models),
and also offers a user API for defining user-defined models.

To use a core model, use the invoke_model() API. The
available core models are documented in the API Reference:

from manticore.native.models import strcmp
addr_of_strcmp = 0x400510
@m.hook(addr_of_strcmp)
def strcmp_model(state):
 state.invoke_model(strcmp)

To implement a user-defined model, implement your model as a Python function, and pass it to
invoke_model(). See the
invoke_model() documentation for more. The
core models [https://github.com/trailofbits/manticore/blob/master/manticore/models.py]
are also good examples to look at and use the same external user API.

Symbolic Input

Manticore allows you to execute programs with symbolic input, which represents a range of possible inputs. You
can do this in a variety of manners.

Wildcard byte

Throughout these various interfaces, the ‘+’ character is defined to designate a byte
of input as symbolic. This allows the user to make input that mixes symbolic and concrete
bytes (e.g. known file magic bytes).

For example: "concretedata++++++++moreconcretedata++++++++++"

Symbolic arguments/environment

To provide a symbolic argument or environment variable on the command line,
use the wildcard byte where arguments and environment are specified.:

$ manticore ./binary +++++ +++++
$ manticore ./binary --env VAR1=+++++ --env VAR2=++++++

For API use, use the argv and envp arguments to the manticore.native.Manticore.linux() classmethod.:

Manticore.linux('./binary', ['++++++', '++++++'], dict(VAR1='+++++', VAR2='++++++'))

Symbolic stdin

Manticore by default is configured with 256 bytes of symbolic stdin data which is configurable
with the stdin_size kwarg of manticore.native.Manticore.linux() , after an optional
concrete data prefix, which can be provided with the concrete_start kwarg of
manticore.native.Manticore.linux().

Symbolic file input

To provide symbolic input from a file, first create the files that will be opened by the
analyzed program, and fill them with wildcard bytes where you would like symbolic data
to be.

For command line use, invoke Manticore with the --file argument.:

$ manticore ./binary --file my_symbolic_file1.txt --file my_symbolic_file2.txt

For API use, use the add_symbolic_file() interface to customize the initial
execution state from an __init__()

@m.init
def init(initial_state):
 initial_state.platform.add_symbolic_file('my_symbolic_file1.txt')

Symbolic sockets

Manticore’s socket support is experimental! Sockets are configured to contain 64 bytes of
symbolic input.

Web Assembly

ManticoreWASM

WASM World

Executor

Module Structure

Types

Plugins

Core

	
will_fork_state_callback(self, state, expression, solutions, policy)

	

	
did_fork_state_callback(self, new_state, expression, solutions, policy, children)

	

	
will_load_state_callback(self, state_id)

	

	
did_load_state_callback(self, state, state_id)

	

	
will_run_callback(self, ready_states)

	

	
did_run_callback(self)

	

Worker

	
will_start_worker_callback(self, workerid)

	

	
will_terminate_state_callback(self, current_state, exception)

	

	
did_terminate_state_callback(self, current_state, exception)

	

	
will_kill_state_callback(self, current_state, exception)

	

	
did_sill_state_callback(self, current_state, exception)

	

	
did_terminate_worker_callback(self, workerid)

	

EVM

	
will_decode_instruction_callback(self, pc)

	

	
will_evm_execute_instruction_callback(self, instruction, args)

	

	
did_evm_execute_instruction_callback(self, last_unstruction, last_arguments, result)

	

	
did_evm_read_memory_callback(self, offset, value, size)

	

	
did_evm_write_memory_callback(self, offset, value, size)

	

	
on_symbolic_sha3_callback(self, data, know_sha3)

	

	
on_concreate_sha3_callback(self, data, value)

	

	
did_evm_read_code_callback(self, code_offset, size)

	

	
will_evm_read_storage_callback(self, storage_address, offset)

	

	
did_evm_read_storage_callback(self, storage_address, offset, value)

	

	
will_evm_write_storage_callback(self, storage_address, offset, value)

	

	
did_evm_write_storage_callback(self, storage_address, offset, value)

	

	
will_open_transaction_callback(self, tx)

	

	
did_open_transaction_callback(self, tx)

	

	
will_close_transaction_callback(self, tx)

	

	
did_close_transaction_callback(self, tx)

	

memory

	
will_map_memory_callback(self, addr, size, perms, filename, offset)

	

	
did_map_memory_callback(self, addr, size, perms, filename, offset, addr) # little confused on this one

	

	
will_map_memory_callback(self, addr, size, perms, None, None)

	

	
did_map_memory_callback(self, addr, size, perms, None, None, addr)

	

	
will_unmap_memory_callback(self, start, size)

	

	
did_unmap_memory_callback(self, start, size)

	

	
will_protect_memory_callback(self, start, size, perms)

	

	
did_protect_memory_callback(self, addr, size, perms, filename, offset)

	

abstractcpu

	
will_execute_syscall_callback(self, model)

	

	
did_execute_syscall_callback(self, func_name, args, ret)

	

	
will_write_register_callback(self, register, value)

	

	
did_write_register_callback(self, register, value)

	

	
will_read_register_callback(self, register)

	

	
did_read_register_callback(self, register, value)

	

	
will_write_memory_callback(self, where, expression, size)

	

	
did_write_memory_callback(self, where, expression, size)

	

	
will_read_memory_callback(self, where, size)

	

	
did_read_memory_callback(self, where, size)

	

	
did_write_memory_callback(self, where, data, num_bits) # iffy

	

	
will_decode_instruction_callback(self, pc)

	

	
will_execute_instruction_callback(self, pc, insn)

	

	
did_execute_instruction_callback(self, last_pc, pc, insn)

	

x86

	
will_set_descriptor_callback(self, selector, base, limit, perms)

	

	
did_set_descriptor_callback(self, selector, base, limit, perms)

	

Gotchas

Manticore has a number of “gotchas”: quirks or little things you need to do in a certain way otherwise you’ll have crashes and other unexpected results.

Mutable context entries

Something like m.context['flag'].append('a') inside a hook will not work. You need to (unfortunately, for now) do m.context['flag'] += ['a']. This is related to
Manticore’s built in support for parallel analysis and use of the multiprocessing library. This gotcha is specifically related to this note from the Python
documentation [https://docs.python.org/2.7/library/multiprocessing.html#multiprocessing.managers.SyncManager.list] :

“Note: Modifications to mutable values or items in dict and list proxies will not be propagated through the manager, because the proxy has no way of knowing when its values or items are modified. To modify such an item, you can re-assign the modified object to the container proxy”

Context locking

Manticore natively supports parallel analysis; if this is activated, client code should always be careful to properly lock the global context when accessing it.

An example of a global context race condition, when modifying two context entries.:

m.context['flag1'] += ['a']
--- interrupted by other worker
m.context['flag2'] += ['b']

Client code should use the locked_context() API:

with m.locked_context() as global_context:
 global_context['flag1'] += ['a']
 global_context['flag2'] += ['b']

“Random” Policy

The random policy, which is the Manticore default, is not actually random and is instead deterministically seeded. This means that running the same analysis twice should return the same results (and get stuck in the same places).

Utilities

Logging

	
manticore.utils.log.init_logging(handler: Optional[logging.Handler] = None) → None

	Initialize logging for Manticore, given a handler or by default use default_logger()

	
manticore.utils.log.get_manticore_logger_names() → List[str]

	

	
manticore.utils.log.set_verbosity(setting: int) → None

	Set the global verbosity (0-5).

	
manticore.utils.log.default_handler() → logging.Handler

	Return a default Manticore logger with a nice formatter and filter.

Index

 B
 | D
 | G
 | I
 | O
 | S
 | W

B

 	
 	
 built-in function

 	did_close_transaction_callback()

 	did_evm_execute_instruction_callback()

 	did_evm_read_code_callback()

 	did_evm_read_memory_callback()

 	did_evm_read_storage_callback()

 	did_evm_write_memory_callback()

 	did_evm_write_storage_callback()

 	did_execute_instruction_callback()

 	did_execute_syscall_callback()

 	did_fork_state_callback()

 	did_load_state_callback()

 	did_map_memory_callback()

 	did_open_transaction_callback()

 	did_protect_memory_callback()

 	did_read_memory_callback()

 	did_read_register_callback()

 	did_run_callback()

 	did_set_descriptor_callback()

 	did_sill_state_callback()

 	did_terminate_state_callback()

 	did_terminate_worker_callback()

 	did_unmap_memory_callback()

 	did_write_memory_callback()

 	did_write_register_callback()

 	on_concreate_sha3_callback()

 	on_symbolic_sha3_callback()

 	will_close_transaction_callback()

 	will_decode_instruction_callback(), [1]

 	will_evm_execute_instruction_callback()

 	will_evm_read_storage_callback()

 	will_evm_write_storage_callback()

 	will_execute_instruction_callback()

 	will_execute_syscall_callback()

 	will_fork_state_callback()

 	will_kill_state_callback()

 	will_load_state_callback()

 	will_map_memory_callback(), [1]

 	will_open_transaction_callback()

 	will_protect_memory_callback()

 	will_read_memory_callback()

 	will_read_register_callback()

 	will_run_callback()

 	will_set_descriptor_callback()

 	will_start_worker_callback()

 	will_terminate_state_callback()

 	will_unmap_memory_callback()

 	will_write_memory_callback()

 	will_write_register_callback()

D

 	
 	default_handler() (in module manticore.utils.log)

 	
 did_close_transaction_callback()

 	built-in function

 	
 did_evm_execute_instruction_callback()

 	built-in function

 	
 did_evm_read_code_callback()

 	built-in function

 	
 did_evm_read_memory_callback()

 	built-in function

 	
 did_evm_read_storage_callback()

 	built-in function

 	
 did_evm_write_memory_callback()

 	built-in function

 	
 did_evm_write_storage_callback()

 	built-in function

 	
 did_execute_instruction_callback()

 	built-in function

 	
 did_execute_syscall_callback()

 	built-in function

 	
 did_fork_state_callback()

 	built-in function

 	
 did_load_state_callback()

 	built-in function

 	
 did_map_memory_callback()

 	built-in function

 	
 	
 did_open_transaction_callback()

 	built-in function

 	
 did_protect_memory_callback()

 	built-in function

 	
 did_read_memory_callback()

 	built-in function

 	
 did_read_register_callback()

 	built-in function

 	
 did_run_callback()

 	built-in function

 	
 did_set_descriptor_callback()

 	built-in function

 	
 did_sill_state_callback()

 	built-in function

 	
 did_terminate_state_callback()

 	built-in function

 	
 did_terminate_worker_callback()

 	built-in function

 	
 did_unmap_memory_callback()

 	built-in function

 	
 did_write_memory_callback()

 	built-in function

 	
 did_write_register_callback()

 	built-in function

G

 	
 	get_manticore_logger_names() (in module manticore.utils.log)

I

 	
 	init_logging() (in module manticore.utils.log)

O

 	
 	
 on_concreate_sha3_callback()

 	built-in function

 	
 	
 on_symbolic_sha3_callback()

 	built-in function

S

 	
 	set_verbosity() (in module manticore.utils.log)

W

 	
 	
 will_close_transaction_callback()

 	built-in function

 	
 will_decode_instruction_callback()

 	built-in function, [1]

 	
 will_evm_execute_instruction_callback()

 	built-in function

 	
 will_evm_read_storage_callback()

 	built-in function

 	
 will_evm_write_storage_callback()

 	built-in function

 	
 will_execute_instruction_callback()

 	built-in function

 	
 will_execute_syscall_callback()

 	built-in function

 	
 will_fork_state_callback()

 	built-in function

 	
 will_kill_state_callback()

 	built-in function

 	
 will_load_state_callback()

 	built-in function

 	
 will_map_memory_callback()

 	built-in function, [1]

 	
 	
 will_open_transaction_callback()

 	built-in function

 	
 will_protect_memory_callback()

 	built-in function

 	
 will_read_memory_callback()

 	built-in function

 	
 will_read_register_callback()

 	built-in function

 	
 will_run_callback()

 	built-in function

 	
 will_set_descriptor_callback()

 	built-in function

 	
 will_start_worker_callback()

 	built-in function

 	
 will_terminate_state_callback()

 	built-in function

 	
 will_unmap_memory_callback()

 	built-in function

 	
 will_write_memory_callback()

 	built-in function

 	
 will_write_register_callback()

 	built-in function

 nav.xhtml

 Table of Contents

 		
 Welcome to Manticore’s documentation!

 		
 Property based symbolic executor: manticore-verifier

 		
 Writing properties in {Solidity/ Vyper}

 		
 Normal properties

 		
 Reverting properties

 		
 Selecting a target contract

 		
 User accounts

 		
 Stopping condition

 		
 Maximum number of transactions

 		
 Maximum coverage % attained

 		
 Timeout

 		
 Walkthrough

 		
 ManticoreBase

 		
 Workers

 		
 States

 		
 Accessing

 		
 Operations

 		
 Inspecting

 		
 EVM

 		
 ABI

 		
 Manager

 		
 EVM

 		
 Native

 		
 Platforms

 		
 Linux

 		
 Models

 		
 State

 		
 Cpu

 		
 Memory

 		
 State

 		
 Function Models

 		
 Symbolic Input

 		
 Web Assembly

 		
 ManticoreWASM

 		
 WASM World

 		
 Executor

 		
 Module Structure

 		
 Types

 		
 Plugins

 		
 Core

 		
 Worker

 		
 EVM

 		
 memory

 		
 abstractcpu

 		
 x86

 		
 Gotchas

 		
 Mutable context entries

 		
 Context locking

 		
 “Random” Policy

 		
 Utilities

 		
 Logging

_static/plus.png

_static/file.png

_static/minus.png

