

Welcome to Manticore’s documentation!

Manticore is a symbolic execution tool for analysis of binaries and smart contracts.

Contents:

	API Reference
	Helpers

	Manticore

	State

	SLinux

	Cpu

	Models

	EVM

	Symbolic Input
	Wildcard byte

	Symbolic arguments/environment

	Symbolic stdin

	Symbolic file input

	Symbolic sockets

	Function Models

	Gotchas
	Mutable context entries

	Context locking

	“Random” Policy

Indices and tables

	Index

	Module Index

	Search Page

API Reference

This API is under active development, and should be considered unstable.

Helpers

Manticore

State

SLinux

Symbolic Linux

Cpu

Models

EVM

Symbolic Input

Manticore allows you to execute programs with symbolic input, which represents a range of possible inputs. You
can do this in a variety of manners.

Wildcard byte

Throughout these various interfaces, the ‘+’ character is defined to designate a byte
of input as symbolic. This allows the user to make input that mixes symbolic and concrete
bytes (e.g. known file magic bytes).:

For example: “concretedata++++++++moreconcretedata++++++++++”

Symbolic arguments/environment

To provide a symbolic argument or environment variable on the command line,
use the wildcard byte where arguments and environment are specified.:

$ manticore ./binary +++++ +++++
$ manticore ./binary --env VAR1=+++++ --env VAR2=++++++

For API use, use the argv and envp arguments to the manticore.Manticore.linux() classmethod.:

Manticore.linux('./binary', ['++++++', '++++++'], dict(VAR1='+++++', VAR2='++++++'))

Symbolic stdin

Manticore by default is configured with 256 bytes of symbolic stdin data, after an optional
concrete data prefix, which can be provided with the concrete_start kwarg of
manticore.Manticore.linux().

Symbolic file input

To provide symbolic input from a file, first create the files that will be opened by the
analyzed program, and fill them with wildcard bytes where you would like symbolic data
to be.

For command line use, invoke Manticore with the --file argument.:

$ manticore ./binary --file my_symbolic_file1.txt --file my_symbolic_file2.txt

For API use, use the add_symbolic_file() interface to customize the initial
execution state from an init() hook.:

@m.init
def init(initial_state):
 initial_state.platform.add_symbolic_file('my_symbolic_file1.txt')

Symbolic sockets

Manticore’s socket support is experimental! Sockets are configured to contain 64 bytes of
symbolic input.

Function Models

The Manticore function modeling API can be used to override a certain
function in the target program with a custom implementation in Python.
This can greatly increase performance.

Manticore comes with implementations of function models for some common library routines (core models),
and also offers a user API for defining user-defined models.

To use a core model, use the invoke_model() API. The
available core models are documented in the API Reference:

from manticore.models import strcmp
addr_of_strcmp = 0x400510
@m.hook(addr_of_strcmp)
def strcmp_model(state):
 state.invoke_model(strcmp)

To implement a user-defined model, implement your model as a Python function, and pass it to
invoke_model(). See the
invoke_model() documentation for more. The
core models [https://github.com/trailofbits/manticore/blob/master/manticore/models.py]
are also good examples to look at and use the same external user API.

Gotchas

Manticore has a number of “gotchas”: quirks or little things you need to do in a certain way otherwise you’ll have crashes and other unexpected results.

Mutable context entries

Something like m.context['flag'].append('a') inside a hook will not work. You need to (unfortunately, for now) do m.context['flag'] += ['a']. This is related to
Manticore’s built in support for parallel analysis and use of the multiprocessing library. This gotcha is specifically related to this note from the Python
documentation [https://docs.python.org/2.7/library/multiprocessing.html#multiprocessing.managers.SyncManager.list] :

“Note: Modifications to mutable values or items in dict and list proxies will not be propagated through the manager, because the proxy has no way of knowing when its values or items are modified. To modify such an item, you can re-assign the modified object to the container proxy”

Context locking

Manticore natively supports parallel analysis; if this is activated, client code should always be careful to properly lock the global context when accessing it.

An example of a global context race condition, when modifying two context entries.:

m.context['flag1'] += ['a']
--- interrupted by other worker
m.context['flag2] += ['b']

Client code should use the locked_context() API:

with m.locked_context() as global_context:
 global_context['flag1'] += ['a']
 global_context['flag2'] += ['b']

“Random” Policy

The random policy, which is the manticore default, is not actually random and is instead deterministically seeded. This means that running the same analysis twice should return the same results (and get stuck in the same places).

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to Manticore’s documentation!

 		
 API Reference

 		
 Helpers

 		
 Manticore

 		
 State

 		
 SLinux

 		
 Cpu

 		
 Models

 		
 EVM

 		
 Symbolic Input

 		
 Wildcard byte

 		
 Symbolic arguments/environment

 		
 Symbolic stdin

 		
 Symbolic file input

 		
 Symbolic sockets

 		
 Function Models

 		
 Gotchas

 		
 Mutable context entries

 		
 Context locking

 		
 “Random” Policy

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

