

Welcome to Manticore’s documentation!

Manticore is a prototyping tool for dynamic binary analysis, with support for symbolic execution, taint analysis, and binary instrumentation.

Contents:

	API Reference
	Helpers

	Manticore

	State

	Cpu

	Models

	Function Models

	Gotchas
	Mutable context entries

	Context locking

Indices and tables

	Index

	Module Index

	Search Page

API Reference

This API is under active development, and should be considered unstable.

Helpers

	
manticore.issymbolic(value)

	Helper to determine whether an object is symbolic (e.g checking
if data read from memory is symbolic)

	Parameters:	value (object) – object to check

	Returns:	whether value is symbolic

	Return type:	bool

	
manticore.variadic(func)

	A decorator used to mark a function model as variadic. This function should
take two parameters: a State object, and
a generator object for the arguments.

	Parameters:	func (callable) – Function model

Manticore

	
class manticore.Manticore(binary_path, args=None, disasm='capstone')

	The central analysis object.

	Parameters:	
	binary_path (str) – Path to binary to analyze

	args (list[str]) – Arguments to provide to binary

	Variables:	context (dict) – Global context for arbitrary data storage

	
add_hook(pc, callback)

	Add a callback to be invoked on executing a program counter. Pass None
for pc to invoke callback on every instruction. callback should be a callable
that takes one State argument.

	Parameters:	
	pc (int or None) – Address of instruction to hook

	callback (callable) – Hook function

	
hook(pc)

	A decorator used to register a hook function for a given instruction address.
Equivalent to calling add_hook().

	Parameters:	pc (int or None) – Address of instruction to hook

	
locked_context(*args, **kwds)

	A context manager that provides safe parallel access to the global Manticore context.
This should be used to access the global Manticore context
when parallel analysis is activated. Code within the with block is executed
atomically, so access of shared variables should occur within.

Example use:

with m.locked_context() as context:
 visited = context['visited']
 visited.append(state.cpu.PC)
 context['visited'] = visited

Optionally, parameters can specify a key and type for the object paired to this key.:

with m.locked_context('feature_list', list) as feature_list:
 feature_list.append(1)

	Parameters:	
	key (object) – Storage key

	value_type (list or dict or set) – type of value associated with key

	
run(procs=1, timeout=0)

	Runs analysis.

	Parameters:	
	procs (int) – Number of parallel worker processes

	timeout – Analysis timeout, in seconds

	
terminate()

	Gracefully terminate the currently-executing run. Typically called from within
a hook().

	
verbosity

	Convenience interface for setting logging verbosity to one of
several predefined logging presets. Valid values: 0-5.

State

	
class manticore.core.state.State(constraints, platform, **kwargs)

	Representation of a unique program state/path.

	Parameters:	
	constraints (ConstraintSet) – Initial constraints

	platform (Platform) – Initial operating system state

	Variables:	context (dict) – Local context for arbitrary data storage

	
abandon()

	Abandon the currently-active state.

Note: This must be called from the Executor loop, or a hook().

	
constrain(constraint)

	Constrain state.

	Parameters:	constraint (manticore.core.smtlib.Bool) – Constraint to add

	
generate_testcase(name, message='State generated testcase')

	Generate a testcase for this state and place in the analysis workspace.

	Parameters:	
	name (str) – Short string identifying this testcase used to prefix workspace entries.

	message (str) – Longer description

	
invoke_model(model)

	Invoke a model. A model is a callable whose first argument is a
State. If the model models a normal (non-variadic)
function, the following arguments correspond to the arguments of the C function
being modeled. If the model models a variadic function, the following argument
is a generator object, which can be used to access function arguments dynamically.
The model callable should simply return the value that should be returned by the
native function being modeled.

	Parameters:	model (callable) – Model to invoke

	
new_symbolic_buffer(nbytes, **options)

	Create and return a symbolic buffer of length nbytes. The buffer is
not written into State’s memory; write it to the state’s memory to
introduce it into the program state.

	Parameters:	
	nbytes (int) – Length of the new buffer

	name (str) – (keyword arg only) The name to assign to the buffer

	cstring (bool) – (keyword arg only) Whether or not to enforce that the buffer is a cstring
(i.e. no bytes, except for the last byte). (bool)

	taint (tuple or frozenset) – Taint identifier of the new buffer

	Returns:	Expression representing the buffer.

	
new_symbolic_value(nbits, label='val', taint=frozenset([]))

	Create and return a symbolic value that is nbits bits wide. Assign
the value to a register or write it into the address space to introduce
it into the program state.

	Parameters:	
	nbits (int) – The bitwidth of the value returned

	label (str) – The label to assign to the value

	taint (tuple or frozenset) – Taint identifier of this value

	Returns:	Expression representing the value

	
solve_buffer(addr, nbytes)

	Reads nbytes of symbolic data from a buffer in memory at addr and attempts to
concretize it

	Parameters:	
	address (int) – Address of buffer to concretize

	nbytes (int) – Size of buffer to concretize

	Returns:	Concrete contents of buffer

	Return type:	list[int]

	
solve_n(expr, nsolves, policy='minmax')

	Concretize a symbolic Expression into
nsolves solutions.

	Parameters:	expr (manticore.core.smtlib.Expression) – Symbolic value to concretize

	Returns:	Concrete value

	Return type:	list[int]

	
solve_one(expr)

	Concretize a symbolic Expression into
one solution.

	Parameters:	expr (manticore.core.smtlib.Expression) – Symbolic value to concretize

	Returns:	Concrete value

	Return type:	int

	
symbolicate_buffer(data, label='INPUT', wildcard='+', string=False, taint=frozenset([]))

	Mark parts of a buffer as symbolic (demarked by the wildcard byte)

	Parameters:	
	data (str) – The string to symbolicate. If no wildcard bytes are provided,
this is the identity function on the first argument.

	label (str) – The label to assign to the value

	wildcard (str) – The byte that is considered a wildcard

	string (bool) – Ensure bytes returned can not be

	taint (tuple or frozenset) – Taint identifier of the symbolicated data

	Returns:	If data does not contain any wildcard bytes, data itself. Otherwise,
a list of values derived from data. Non-wildcard bytes are kept as
is, wildcard bytes are replaced by Expression objects.

Cpu

	
class manticore.core.cpu.abstractcpu.Cpu(regfile, memory, **kwargs)

	Base class for all Cpu architectures. Functionality common to all
architectures (and expected from users of a Cpu) should be here. Commonly
used by platforms and py:class:manticore.core.Executor

The following attributes need to be defined in any derived class

	arch

	mode

	max_instr_width

	address_bit_size

	pc_alias

	stack_alias

	
all_registers

	Returns all register names for this CPU. Any register returned can be
accessed via a cpu.REG convenience interface (e.g. cpu.EAX) for both
reading and writing.

	Returns:	valid register names

	Return type:	tuple[str]

	
read_bytes(where, size)

	Read from memory.

	Parameters:	
	where (int) – address to read data from

	size (int) – number of bytes

	Returns:	data

	Return type:	list[int or Expression]

	
read_int(where, size=None)

	Reads int from memory

	Parameters:	
	where (int) – address to read from

	size – number of bits to read

	Returns:	the value read

	Return type:	int or BitVec

	
read_register(register)

	Dynamic interface for reading cpu registers

	Parameters:	register (str) – register name (as listed in self.all_registers)

	Returns:	register value

	Return type:	int or long or Expression

	
write_bytes(where, data)

	Write a concrete or symbolic (or mixed) buffer to memory

	Parameters:	
	where (int) – address to write to

	data (str or list) – data to write

	
write_int(where, expression, size=None)

	Writes int to memory

	Parameters:	
	where (int) – address to write to

	expr (int or BitVec) – value to write

	size – bit size of expr

	
write_register(register, value)

	Dynamic interface for writing cpu registers

	Parameters:	
	register (str) – register name (as listed in self.all_registers)

	value (int or long or Expression) – register value

Models

Models here are intended to be passed to invoke_model(), not invoked directly.

	
manticore.models.strlen()

	

	
manticore.models.strcmp()

	

Function Models

The Manticore function modeling API can be used to override a certain
function in the target program with a custom implementation in Python.
This can greatly increase performance.

Manticore comes with implementations of function models for some common library routines (core models),
and also offers a user API for defining user-defined models.

To use a core model, use the invoke_model() API. The
available core models are documented in the API Reference:

from manticore.models import strcmp
addr_of_strcmp = 0x400510
@m.hook(addr_of_strcmp)
def strcmp_model(state):
 state.invoke_model(strcmp)

To implement a user-defined model, implement your model as a Python function, and pass it to
invoke_model(). See the
invoke_model() documentation for more. The
core models [https://github.com/trailofbits/manticore/blob/master/manticore/models.py]
are also good examples to look at and use the same external user API.

Gotchas

Manticore has a number of “gotchas”: quirks or little things you need to do in a certain way otherwise you’ll have crashes and other unexpected results.

Mutable context entries

Something like m.context['flag'].append('a') inside a hook will not work. You need to (unfortunately, for now) do m.context['flag'] += ['a']. This is related to
Manticore’s built in support for parallel analysis and use of the multiprocessing library. This gotcha is specifically related to this note from the Python
documentation [https://docs.python.org/2.7/library/multiprocessing.html#multiprocessing.managers.SyncManager.list] :

“Note: Modifications to mutable values or items in dict and list proxies will not be propagated through the manager, because the proxy has no way of knowing when its values or items are modified. To modify such an item, you can re-assign the modified object to the container proxy”

Context locking

Manticore natively supports parallel analysis; if this is activated, client code should always be careful to properly lock the global context when accessing it.

An example of a global context race condition, when modifying two context entries.:

m.context['flag1'] += ['a']
--- interrupted by other worker
m.context['flag2] += ['b']

Client code should use the locked_context() API:

with m.locked_context() as global_context:
 global_context['flag1'] += ['a']
 global_context['flag2'] += ['b']

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 manticore	

 	
 	
 manticore.models	

Index

 A
 | C
 | G
 | H
 | I
 | L
 | M
 | N
 | R
 | S
 | T
 | V
 | W

A

 	
 	abandon() (manticore.core.state.State method)

 	
 	add_hook() (manticore.Manticore method)

 	all_registers (manticore.core.cpu.abstractcpu.Cpu attribute)

C

 	
 	constrain() (manticore.core.state.State method)

 	
 	Cpu (class in manticore.core.cpu.abstractcpu)

G

 	
 	generate_testcase() (manticore.core.state.State method)

H

 	
 	hook() (manticore.Manticore method)

I

 	
 	invoke_model() (manticore.core.state.State method)

 	
 	issymbolic() (in module manticore)

L

 	
 	locked_context() (manticore.Manticore method)

M

 	
 	Manticore (class in manticore)

 	
 	manticore (module)

 	manticore.models (module)

N

 	
 	new_symbolic_buffer() (manticore.core.state.State method)

 	
 	new_symbolic_value() (manticore.core.state.State method)

R

 	
 	read_bytes() (manticore.core.cpu.abstractcpu.Cpu method)

 	read_int() (manticore.core.cpu.abstractcpu.Cpu method)

 	
 	read_register() (manticore.core.cpu.abstractcpu.Cpu method)

 	run() (manticore.Manticore method)

S

 	
 	solve_buffer() (manticore.core.state.State method)

 	solve_n() (manticore.core.state.State method)

 	solve_one() (manticore.core.state.State method)

 	
 	State (class in manticore.core.state)

 	strcmp() (in module manticore.models)

 	strlen() (in module manticore.models)

 	symbolicate_buffer() (manticore.core.state.State method)

T

 	
 	terminate() (manticore.Manticore method)

V

 	
 	variadic() (in module manticore)

 	
 	verbosity (manticore.Manticore attribute)

W

 	
 	write_bytes() (manticore.core.cpu.abstractcpu.Cpu method)

 	
 	write_int() (manticore.core.cpu.abstractcpu.Cpu method)

 	write_register() (manticore.core.cpu.abstractcpu.Cpu method)

 nav.xhtml

 Table of Contents

 		Welcome to Manticore's documentation!

 		API Reference

 		Helpers

 		Manticore

 		State

 		Cpu

 		Models

 		Function Models

 		Gotchas

 		Mutable context entries

 		Context locking

_static/file.png

_static/minus.png

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

_static/comment-close.png

_static/comment-bright.png

