

Welcome to Manticore’s documentation!

Manticore is a prototyping tool for dynamic binary analysis, with support for symbolic execution, taint analysis, and binary instrumentation.

Contents:

	API
	Helpers

	Manticore

	State

	Cpu

Indices and tables

	Index

	Module Index

	Search Page

API

This API is under active development, and should be considered unstable.

Helpers

	
manticore.issymbolic(value)

	Helper to determine whether an object is symbolic (e.g checking
if data read from memory is symbolic)

	Parameters:	value (object) – object to check

	Returns:	whether value is symbolic

	Return type:	bool

Manticore

	
class manticore.Manticore(binary_path, args=None)

	The central analysis object.

	Parameters:	
	binary_path (str) – Path to binary to analyze

	args (list[str]) – Arguments to provide to binary

	
add_hook(pc, callback)

	Add a callback to be invoked on executing a program counter. Pass None
for pc to invoke callback on every instruction. callback should be a callable
that takes one State argument.

	Parameters:	
	pc (int or None) – Address of instruction to hook

	callback (callable) – Hook function

	
hook(pc)

	A decorator used to register a hook function for a given instruction address.
Equivalent to calling add_hook().

	Parameters:	pc (int or None) – Address of instruction to hook

	
run(timeout=0)

	Runs analysis.

	
terminate()

	Gracefully terminate the currently-executing run. Typically called from within
a hook().

	
verbosity

	Convenience interface for setting logging verbosity to one of several predefined
logging presets. Valid values: 0-5

State

	
class manticore.core.state.State(constraints, model)

	Representation of a unique program state/path.

	Parameters:	
	constraints (ConstraintSet) – Initial constraints on state

	model (Decree or Linux or Windows) – Initial constraints on state

	
abandon()

	Abandon the currently-active state.

Note: This must be called from the Executor loop, or a hook().

	
constrain(constraint)

	Constrain state.

	Parameters:	constraint (manticore.core.smtlib.Bool) – Constraint to add

	
new_symbolic_buffer(nbytes, **options)

	Create and return a symbolic buffer of length nbytes. The buffer is
not written into State’s memory; write it to the state’s memory to
introduce it into the program state.

	Parameters:	
	nbytes (int) – Length of the new buffer

	name (str) – (keyword arg only) The name to assign to the buffer

	cstring (bool) – (keyword arg only) Whether or not to enforce that the buffer is a cstring
(i.e. no bytes, except for the last byte). (bool)

	Returns:	Expression representing the buffer.

	
new_symbolic_value(nbits, label='val', taint=frozenset([]))

	Create and return a symbolic value that is nbits bits wide. Assign
the value to a register or write it into the address space to introduce
it into the program state.

	Parameters:	
	nbits (int) – The bitwidth of the value returned

	label (str) – The label to assign to the value

	taint (tuple or frozenset) – Taint identifier of this value

	Returns:	Expression representing the value

	
solve_n(expr, nsolves=1, policy='minmax')

	Concretize a symbolic Expression into
nsolves solutions.

	Parameters:	expr (manticore.core.smtlib.Expression) – Symbolic value to concretize

	Returns:	Concrete value

	Return type:	list[int]

	
solve_one(expr)

	Concretize a symbolic Expression into
one solution.

	Parameters:	expr (manticore.core.smtlib.Expression) – Symbolic value to concretize

	Returns:	Concrete value

	Return type:	int

	
symbolicate_buffer(data, label='INPUT', wildcard='+', string=False)

	Mark parts of a buffer as symbolic (demarked by the wildcard byte)

	Parameters:	
	data (str) – The string to symbolicate. If no wildcard bytes are provided,
this is the identity function on the first argument.

	label (str) – The label to assign to the value

	wildcard (str) – The byte that is considered a wildcard

	string (bool) – Ensure bytes returned can not be

	Returns:	If data does not contain any wildcard bytes, data itself. Otherwise,
a list of values derived from data. Non-wildcard bytes are kept as
is, wildcard bytes are replaced by Expression objects.

Cpu

	
class manticore.core.cpu.abstractcpu.Cpu(regfile, memory)

	Base class for all Cpu architectures. Functionality common to all
architectures (and expected from users of a Cpu) should be here. Commonly
used by models and py:class:manticore.core.Executor

The following attributes need to be defined in any derived class

	arch

	mode

	max_instr_width

	address_bit_size

	pc_alias

	stack_alias

	
all_registers

	Returns all register names for this CPU. Any register returned can be
accessed via a cpu.REG convenience interface (e.g. cpu.EAX) for both
reading and writing.

	Returns:	valid register names

	Return type:	tuple[str]

	
read_bytes(where, size)

	Read from memory.

	Parameters:	
	where (int) – address to read data from

	size (int) – number of bytes

	Returns:	data

	Return type:	list[int or Expression]

	
read_int(where, size=None)

	Reads int from memory

	Parameters:	
	where (int) – address to read from

	size – number of bits to read

	Returns:	the value read

	Return type:	int or BitVec

	
read_register(register)

	Dynamic interface for reading cpu registers

	Parameters:	register (str) – register name (as listed in self.all_registers)

	Returns:	register value

:rtype int or long or Expression

	
write_bytes(where, data)

	Write a concrete or symbolic (or mixed) buffer to memory

	Parameters:	
	where (int) – address to write to

	data (str or list) – data to write

	
write_int(where, expr, size=None)

	Writes int to memory

	Parameters:	
	where (int) – address to write to

	expr (int or BitVec) – value to write

	size – bit size of expr

	
write_register(register, value)

	Dynamic interface for writing cpu registers

	Parameters:	
	register (str) – register name (as listed in self.all_registers)

	value (int or long or Expression) – register value

Index

 A
 | C
 | H
 | I
 | M
 | N
 | R
 | S
 | T
 | V
 | W

A

 	
 	abandon() (manticore.core.state.State method)

 	
 	add_hook() (manticore.Manticore method)

 	all_registers (manticore.core.cpu.abstractcpu.Cpu attribute)

C

 	
 	constrain() (manticore.core.state.State method)

 	
 	Cpu (class in manticore.core.cpu.abstractcpu)

H

 	
 	hook() (manticore.Manticore method)

I

 	
 	issymbolic() (in module manticore)

M

 	
 	Manticore (class in manticore)

N

 	
 	new_symbolic_buffer() (manticore.core.state.State method)

 	
 	new_symbolic_value() (manticore.core.state.State method)

R

 	
 	read_bytes() (manticore.core.cpu.abstractcpu.Cpu method)

 	read_int() (manticore.core.cpu.abstractcpu.Cpu method)

 	
 	read_register() (manticore.core.cpu.abstractcpu.Cpu method)

 	run() (manticore.Manticore method)

S

 	
 	solve_n() (manticore.core.state.State method)

 	solve_one() (manticore.core.state.State method)

 	
 	State (class in manticore.core.state)

 	symbolicate_buffer() (manticore.core.state.State method)

T

 	
 	terminate() (manticore.Manticore method)

V

 	
 	verbosity (manticore.Manticore attribute)

W

 	
 	write_bytes() (manticore.core.cpu.abstractcpu.Cpu method)

 	
 	write_int() (manticore.core.cpu.abstractcpu.Cpu method)

 	write_register() (manticore.core.cpu.abstractcpu.Cpu method)

 nav.xhtml

 Table of Contents

 		Welcome to Manticore's documentation!

 		API

 		Helpers

 		Manticore

 		State

 		Cpu

_static/ajax-loader.gif

_static/comment-close.png

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/up-pressed.png

_static/down.png

_static/up.png

_static/minus.png

_static/comment.png

_static/comment-bright.png

